SEQUENCE OF OPERATION GUIDELINE

LABORATORY CONTROL – SUPPLY AND GENERAL

Document: lab-s-g-rev1
Revision: 1.0
Rev. Date: July 22, 2011

NOTES:

1. THIS SEQUENCE IS INTENDED TO PROVIDE THE DESIGN PROFESSIONAL WITH A BASIC GUIDELINE OF MINIMUM REQUIREMENTS FOR A TYPICAL LABORATORY WITH SUPPLY TERMINAL AND GENERAL EXHAUST TERMINAL. THIS SEQUENCE SHALL BE CAREFULLY REVIEWED AND EDITED WITH RESPECT TO APPLICATION-SPECIFIC PROJECT REQUIREMENTS AND PROPOSED MODIFICATIONS SHALL BE REVIEWED WITH FSU STAFF.

2. THE INTENT IS FOR THIS SEQUENCE TO BE INCLUDED IN THE CONTRACT DRAWINGS.

3. USE ZONE OCCUPANCY SENSORS FOR “UNOCCUPIED” MODE WHENEVER POSSIBLE. COORDINATE WITH ELECTRICAL/LIGHTING DESIGN FOR DUAL USE.


LABORATORY, SUPPLY AND GENERAL EXHAUST:

PROVIDE THE FOLLOWING FOR ALL LABORATORIES.

1. ROOM THERMOSTAT WITH INTEGRAL TEMPERATURE SENSOR, INTEGRAL DISPLAY, SLIDING SCALE SETPOINT ADJUSTMENT, AND REMOTE COMMUNICATION PORT.
2. THE LABORATORY ENVELOPE CONSISTS OF SUPPLY VAV BOX WITH REHEAT COIL AND 1 GENERAL EXHAUST VAV BOX.
3. PROVIDE A SUPPLY AIR SENSOR DOWNSTREAM OF THE SUPPLY TERMINAL REHEAT COIL FOR USE IN MONITORING OVERALL TERMINAL UNIT PERFORMANCE.
4. CALCULATE TOTAL EXHAUST AIR VOLUME AND TOTAL SUPPLY AIR VOLUME FOR THE LAB TO MONITOR AND MAINTAIN A SCHEDULED AIRFLOW OFFSET.
5. OCCUPIED MODE SHALL BE DETERMINED BY [SCHEDULE OR LOCAL OCCUPANCY SENSOR].

OCCUPIED MODE

1. THE LAB CONTROLLER SHALL MAINTAIN OCCUPIED TEMPERATURE SETPOINTS AND MINIMUM VENTILATION RATES. REFER TO SCHEDULE FOR MINIMUM OCCUPIED CFM SETPOINTS TO ESTABLISH MINIMUM VENTILATION RATES DURING OCCUPIED MODE.
UNOCCUPIED MODE

1. THE LAB CONTROLLER SHALL MAINTAIN UNOCCUPIED TEMPERATURE SETPOINTS AND MINIMUM VENTILATION RATES. REFER TO SCHEDULE FOR MINIMUM UNOCCUPIED CFM SETPOINTS TO ESTABLISH MINIMUM VENTILATION RATES DURING UNOCCUPIED MODE.

ROOM VENTILATION CONTROL

1. THE LAB CONTROLLER CALCULATES TOTAL ROOM EXHAUST CFM BY ADDING THE ROOM GENERAL EXHAUST CFM TOGETHER.
2. THE LAB CONTROLLER SHALL THEN MODULATE THE ROOM GENERAL EXHAUST FROM ITS SCHEDULED MINIMUM TO MAXIMUM FLOW SETPOINT TO ENSURE THAT A MINIMUM TOTAL ROOM EXHAUST NECESSARY TO MEET THE REQUIRED ROOM VENTILATION RATE IS CONTINUOUSLY MAINTAINED.

ROOM PRESSURIZATION CONTROL

1. THE LAB CONTROLLER SHALL UTILIZE AN AIRFLOW SENSOR IN THE ROOM SUPPLY AIR TERMINAL TO CONTINUOUSLY MEASURE THE ACTUAL ROOM SUPPLY AIR CFM.
2. THE LAB CONTROLLER CALCULATES THE REQUIRED ROOM SUPPLY AIR CFM NECESSARY TO MAINTAIN THE PREDETERMINED FLOW TRACKING DIFFERENTIAL BY SUBTRACTING THE FLOW TRACKING DIFFERENTIAL CFM SET POINT FROM THE TOTAL ROOM EXHAUST CFM.
3. THE LAB CONTROLLER SHALL MODULATE THE ROOM SUPPLY AIR CFM TO ENSURE THAT THE FLOW TRACKING DIFFERENTIAL CFM IS ALWAYS MAINTAINED.

ROOM TEMPERATURE CONTROL

1. WHEN THE ROOM AIRFLOWS ARE NOT CHANGING, THE LAB CONTROLLER MAINTAINS THE ROOM AT THE AMBIENT TEMPERATURE SET POINT BY MODULATING THE HEATING VALVE.
3. UPON A CHANGE IN ROOM AIRFLOW (I.E. GENERAL EXHAUST IS RE-POSITIONED), THE LAB CONTROLLER SHALL CALCULATE THE NEW REQUIRED SUPPLY AIR TEMPERATURE REQUIRED TO HANDLE THE SAME ROOM COOLING LOAD BUT AT THE NEW SUPPLY AIRFLOW NEEDED TO MAINTAIN ROOM PRESSURIZATION.
4. IF THE CALCULATED SUPPLY AIR TEMPERATURE IS OUTSIDE OF THE PRESET SUPPLY AIR TEMPERATURE DISCHARGE LIMITS, THE SEQUENCE MAINTAINS THE SUPPLY DISCHARGE TEMPERATURE AT THE LIMIT AND INCREASES THE SUPPLY AIRFLOW TO HANDLE THE COOLING LOAD WHILE ALSO INCREASING THE ROOM GENERAL EXHAUST AIRFLOW TO MAINTAIN ROOM PRESSURIZATION.

OCCUPIED SETPOINT 74 F (ADJUSTABLE)
UNOCCUPIED SETPOINT 78 F (ADJUSTABLE)
<table>
<thead>
<tr>
<th>SHORT NAME</th>
<th>POINT DESCRIPTION</th>
<th>UNITS</th>
<th>POINT TYPE</th>
<th>ALARM</th>
<th>CONDITION</th>
<th>INTEGRATED POINT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbb_LAB_RMxxx_SUP_FLW</td>
<td>SUPPLY AIR FLOW</td>
<td>CFM</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_SUP_DMP</td>
<td>SUPPLY AIR DAMPER</td>
<td>%OPEN</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_SUP_RHV</td>
<td>REHEAT VALVE OUTPUT</td>
<td>%OPEN</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_SUP_SA</td>
<td>SUPPLY AIR TEMPERATURE</td>
<td>DEG F</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_SUP_OS</td>
<td>OCCUPANCY STATUS</td>
<td>OCC/UNOCC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_GEX_FLW</td>
<td>GENERAL EXHAUST AIR FLOW</td>
<td>CFM</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_GEX_DMP</td>
<td>EXHAUST AIR DAMPER</td>
<td>%OPEN</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_ZT</td>
<td>LAB TEMPERATURE</td>
<td>DEG F</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_SP</td>
<td>LAB TEMPERATURE SETPOINT</td>
<td>DEG F</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_OR</td>
<td>LAB TEMPORARY OCCUPANCY OVERRIDE</td>
<td>OCC/UNOCC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_H</td>
<td>LAB HUMIDITY</td>
<td>%RH</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbb_LAB_RMxxx_DP</td>
<td>LAB DIFFERENTIAL PRESSURE</td>
<td>INWC</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>